
R3TOS: A Reliable Reconfigurable Real-Time Operating System
X. Iturbe1,2, M. Azkarate1, I. Martinez1, A. Perez1, K. Benkrid2, A.T. Erdogan2, T. Arslan2

1Embedded System-on-Chip Group, IKERLAN-IK4 Research Alliance, Mondragón, 20500, Basque Country
Email: {xiturbe, mazkarateaskasua, imartinez, aperez}@ikerlan.es

2System Level Integration Research Group, The University of Edinburgh, Edinburgh EH9 3JL, Scotland, UK
Email: {x.iturbe, k.benkrid, ahmet.erdogan, t.arslan}@ed.ac.uk

Abstract: The foundations for building the first
Reliable Reconfigurable Real-Time Operating
System (R3TOS) are presented. The main objective
of R3TOS is to create an infrastructure for
coordinately executing specialized hardware tasks
upon a reconfigurable FPGA device, achieving the
necessary flexibility for both gaining system
performance (true hardware multitasking) and
tolerating the occurring faults in the underlying chip’s
silicon at runtime (true fault removal from system).
R3TOS is aimed at easing the development of
FPGA-based high-performance demanding reliable
applications by hiding the complexity of these
devices, promoting their use by the whole
engineering community.

Keywords: Operating System, FPGA, Fault
Tolerance, Real-Time, Dynamic Partial Runtime
Reconfiguration

1. Introduction: The 21st Century FPGAs

21st century Field-Programmable Gate Arrays
(FPGAs) are not used for implementing simple ”glue
logic” functions anymore. They have become a
fascinating parallel and distributed extremely
advanced compute fabrics with a regular architecture
of reconfigurable computational elements and
memories, which can be seen as an alternative to
the Von Neumann serialized processors in which the
computational elements are fixed. In general terms,
an FPGA can be considered as a ”liquid silicon”
which is appropriately ”molded” to create the desired
functionality. Specifically, SRAM-based FPGAs are
able to self-reconfigure the functionality implemented
by a part of the computational elements they include
while the rest of them are still performing active
computation. This capability is commonly called
Dynamic Partial runtime Reconfiguration (DPR) and
has been significatively improved in Xilinx partial
reconfiguration early access tools latest fully
supported Virtex-4 family of devices [1,2]. First, the
chip fabric is divided into independently
reconfigurable units (clock regions), which allow
reconfigurable modules to be located in the same
column. Second, the new 32-bit wide and 100 MHz
running Internal Configuration Access Port (ICAP)
permits the reconfiguration to be performed much
faster.

1.1 Towards Higher Performance

DPR turns the FPGA into a flexible computing device
in which it is possible to online configure different
custom architectures, each of them specialized for
every type of computation to be done. While a
program defining instructions sequentially customize
the data-path of the Von Neumann processor in
order to obtain the best performance as possible
from a general purpose computation structure, a
partial bitstream configures the functionality
assigned to a specific region of the FPGA by
defining the required architecture at logical level.
Specialized hardware architectures are thus
”molded” on the FPGA silicon at runtime, leading to
a new computation paradigm which crosses the
hardware/software boundaries, combining the
flexibility of software with the speed of hardware.
Based on software-like flexibility, the use of FPGA
based computers able to schedule their own
workload is a natural tendency towards high-
performance, as occurred in the software field some
decades ago. This time, however, computation tasks
are to be executed in a much more appropriate way
than when being executed upon a single serialized
processor whose architecture is rigid at logical level.
On the other hand, hardware-like computing in
space leads to massive parallelism exploitation and
extremely efficient execution and thus, hardware
multitasking arises as a certain reality. In this way, it
is possible to circumvent Pollack’s rule, which states
that the increase in performance of a sequential
processor is only about the square root of the
increase in its complexity [3]. Hardware tasks can be
allocated on the FPGA, executed and finally
replaced by other hardware tasks, leading to a
continuous stream of input operands, computation
and output results, which combines the computation
both in space and in time.
Hence, as firstly proposed by Brebner, there is a role
for a Reconfigurable Operating System (ROS) in
coordinating the concurrent hardware tasks
execution as well as making FPGA computational
underlying resources easy to be used and shared,
by managing them on behalf of the user application
[4]. That is, the underlying hardware is ”virtualized”
and thus, every additional computational elements
included in the FPGA are potentially exploitable by

 Page 1/6

the user application by means of the ROS, leading to
increase the computational power.

1.2 Towards Higher Reliability

Besides performance, reliability is another aspect
also benefited from DPR, which opens the doors to
new more advanced possibilities for implementing
fault tolerant distributed operating systems some
decades after they were firstly conceived (e.g.
TUWien developed Mars OS in 1988 [5]). The main
idea of these OSs is the replication of tasks
execution in different, independent and redundant
components, which interact only through an
intercommunication network. In this way, as long as
any of these redundant components can operate,
the required service can be maintained. Additionally,
Mars OS was intended to be maintainable since any
redundant component could be removed (for
repairing purposes) and later reintegrated in the
system.
FPGAs allow the migration from the aforementioned
late 80’s federated distributed systems to System-
on-Chip (SoC) integrated architectures, in which
replicated hardware tasks are separately yet
simultaneously executed on the same chip, being
only connected through an appropriate Network-on-
Chip (NoC) which ensures no interference will occur
between tasks [6]. Opposite to the rigidness of the
limited number of redundant components integrable
in a federated system, which involved an external
intervention in order to recover from faults (usually
consisting in component replacement), the massively
replicated versatile computational resources
available in an FPGA can be autonomously
reconfigured for circumventing the faults without
requiring any external maintenance [7].
Consequently, by using self-reconfigurable FPGAs a
true fault tolerant (not only maintainable) ROS can
be developed, able to dynamically allocate every
scheduled hardware tasks for execution to non-
damaged computational resources. Hence, the
system is able to autonomously adapt its own
architecture ”on-the-fly” in order to overcome fault
effect and ultimately, maintain the required service.
Likewise, soft-errors caused by radiation can be
automatically corrected by performing a scrubbing in
the configuration memory [8].
These features are especially attractive when
systems are difficult to access and operate on harsh
environments which induce faults on them.
Nowadays these kind of scenarios may be found in
deep space exploration, remote sensing and military
applications, but in time, the autonomy bringing
benefits may also prompt adoption by the
commercial sector.
Real-time is another important challenge in high
reliability demanding applications. The correctness
of a system usually depends not only on the logical

correct computation of results, but also on temporal
correctness. In this way, precised time constraints
must be met, usually dictated by events from its
environment. Since FPGA-based computers can
fastly process many computations in parallel, they
show very short latencies when responding to
environmental events and thus, they can bring closer
real-time behaviour in the order of milliseconds.
Whether by meeting real-time constraints (temporal
correctness) or by keeping the system fault-free at
every time (logical computation correctness), DPR
permits to step up to the Safety Integrity Levels (SIL)
demanded by current international standards (e.g.
IEC-61508 [9]).

1.3 R3TOS: Universalizing the Reliable High-
Performance

However, despite the very promising and attractive
possibilities dynamically and partially reconfigurable
FPGAs offer in both performance and reliability
aspects, currently they are yet to be widely adopted.
One reason is the lack of a consolidated and intuitive
support for the development, management and
execution of hardware tasks based reliable
applications. In fact, FPGAs flexibility, which is the
key for the innovative possibilities they deliver, is
also the cause of the appearing difficulties when
designing with them. This situation puts FPGAs at a
disadvantage compared to existing abundance of
software approaches. Consequently, the easiness
for developing this kind of applications on FPGAs
must be promoted in order to enable the exploitation
of the powerful capabilities these devices deliver by
the whole engineering community, especially by
those who are not familiar with hardware related
issues. After all, software high-level approaches can
only mask occurring faults in the underlying silicon
substrate, while dealing with them at logical level
permit to definitely remove the fault sources from the
system [10].

2. The R3TOS Approach

The objective of the Reliable Reconfigurable Real-
Time Operating System (R3TOS), the first
proposed ROS that exploits FPGAs reconfigurability
for fault tolerance purposes, is to provide the
necessary support without incurring in additional
design costs for continuously adapting system
architecture at runtime in order to gain performance
while ensuring real-time behavior and tolerate
occurring faults in the system. Thanks to it the
application developer is only in charge of defining
and implementing the required functionalities as
hardware tasks, which are then efficiently managed
and executed by R3TOS in a reliable way. This level
of abstraction provides the application developers
with a ”software look and feel” easy-to-use FPGA

 Page 2/6

based advanced computer, enabling them to take
advantage of the ever increasing complexity of state-
of-the art reconfigurable devices in order to deal with
the exigent requirements modern applications
demand and thus, contributing to reduce currently
existing productivity gap.

2.1 Foundations for R3TOS

The proposed architecture for R3TOS is depicted in
Fig. 1. It consists of eight different layers, which are
to be executed upon both custom hardware and a
general purpose processor (e.g. PowerPC,
MicroBlaze or preferably LEON3-FT):

• COTS Real-Time Picokernel, which offers a

well-known interface for software developers,
coordinates software threads execution and
gives support for intertask communication and
synchronization. It runs upon the general
purpose processor.

• Real-Time Scheduler, which is aimed at
coordinating the access to the ICAP port in an
efficient way and assign the appropriate
execution starting times to the hardware tasks.

• 2-D Allocator, which is responsible of allocating
the hardware tasks to the non-damaged
computational resources available on the FPGA
by generating the corresponding configuration
partial bitstreams for them.

• NoC Manager, which updates the routing tables
in the NoC switches according to hardware tasks
locations at every time.

• Dynamic Router, which is responsible of
dynamically creating communication links
among the allocated hardware tasks and the
NoC interfaces (NIs).

• Diagnostic Unit, which performs the diagnosis of
the system: at functional level, by analyzing the
exchanged information through the NoC, and at
physical level, by checking the configuration
frames read-back from the FPGA’s configuration
memory.

• Placer, which is aimed at controlling the ICAP
port while the reconfiguration process takes
place.

• Inter-Device Coordinator, which is in charge of
coordinating the distinct R3TOS instances
running in replicated FPGAs, making it possible
the hardware tasks migration among different
devices.

These layers should be designed including fault
tolerance by design features in order to achieve the
highest reliability for the R3TOS core itself.

Additionally, a high-level software tool to program
the operating system should be provided. This tool
should include a friendly environment in which
program the hardware tasks and should cover the
later synthesis and download of the generated partial
bitstreams for the tasks as well as the initialization of
the corresponding variables in R3TOS.

2.2 The Architecture of R3TOS

Xilinx XC4VLX200 FPGA is the most appropriate
device for implementing an R3TOS-based system as
it is divided into 12x2 independently reconfigurable
clock regions and includes two clearly differentiated
regions: While there are 42 adjacent CLBs in the
central region of the device, the exterior region
includes both 3-4 BRAMs and 16 CLBs (See Fig. 2).
Since BRAMs are necessary for implementing
buffers in the NoC interfaces as well as the routing
tables in the NoC switches, the exterior region of the
FPGA is appropriate be used for task inter-
communication purposes, being called
communication region. On the contrary, the central
homogeneous region is used for allocating the
hardware tasks to be executed, being called
computation region. In this way, every clock region
includes a NoC interface, which establishes the
border between the communication region and the
computation region, several NoC switches, I/O
interfaces and the computational resources to which
tasks are allocated. It is remarkable that, opposite to
currently existing solutions, R3TOS is conceived to
be able to merge and later separate again different
clock regions according to the shape and size of the
hardware tasks to be allocated.

In
te

r-D
ev

ic
e

C
oo

rd
in

at
or

COTS RTOS PicoKernel

Real-Time
Scheduler NoC Manager

Allocator Dynamic Router

Placer

Custom HW + GPP

D
iagnosis

Figure 1: R3TOS layered architecture

The computation region consists of a regular CLBs
arrangement, being the regularity the key for
increasing tasks allocatability [11]. Consequently,
any scheduled task to be executed can be freely

 Page 3/6

allocated to any specific fault-free position within the
computation region and thus, damaged resources
avoidance is promoted. When required, the dynamic
routing unit online creates a communication link
between an allocated task (wherever it is placed in
the computation region) and the nearest NoC
interface to it. This mechanism permits to circumvent
the damaged resources in the proximities of a NoC
interface, which otherwise would prevent the
utilization of a whole clock region.
On the other hand, the NoC, whose routing tables
can be dynamically adapted to the changing
locations of tasks, conducts long-distance
communication along the chip (e.g. [12]). The NoCs
are indeed proven to be the best communication
mechanism for coping with faults on high bandwidth
reconfigurable systems such as the one here
presented [13]. Besides that, since the NoC is the
only way of interaction among tasks, it is possible to
diagnose the system behaviour by analyzing the
value and timing of the information exchanged
through it. The diagnosis can be enhanced by
evaluating the Error Correcting Codes (ECC) of the
configuration frames stored in the FPGA’s
configuration memory, which can be read-back at
runtime.

Figure 2: R3TOS-based system implementation in a

Xilinx XC4VLX200 FPGA

The tasks are classified according to their
communication demand and the criticality of the data
they process.
Tasks which demand high amount of data to be
interchanged with other tasks or with the
environment (e.g. control tasks) are more likely to be
placed close to the communication region, in order to
ease the information exchange through the NoC. In
fact, the only reason for not being allocated next to a
NoC interface is the existence of damaged
resources in its proximity, which will make tasks to
be placed deeper within the computation region,
involving the creation of a dynamic route to the

nearest NoC interface. On the contrary, tasks which
do not require any information to be interchanged
(e.g. pure computation tasks) are more likely to be
placed opposite to the communication region (See
Fig. 3). For this type of tasks, the loading,
initialization and result retrieval will be performed
through the ICAP port by accessing some registers
which are located in specific positions in the task
architecture. This schema ensures the best
exploitation as possible of the computational
resources included in the FPGA device.
Tasks which process critical information are
simultaneously executed on different clock regions in
order to ensure the logical computation correctness,
while tasks which do not perform critical
computations are not replicated. Although spatial
diversity reduces the probabilities a single fault
affects distinct instances of the same tasks, this fact
cannot be completely ensured because the FPGA
itself is a fault-containment region since a single
failure either in the power supply, clock tree or ICAP
port could make the entire device useless. As stated
in [14], in order to achieve the maximum level of
reliability, the system must be partitioned into
independent fault-containment regions and thus,
tasks must be executed in different FPGA devices
which use distinct clock sources and are
independently powered (See Fig. 4).

Figure 3: Allocation of tasks depending on their

communication requirements

Figure 4: On-chip and off-chip TMR

 Page 4/6

Fig. 5 summarizes the foundations of the R3TOS-
based system explained in this section. At system
level, different hardware tasks are allocated and
executed. Since Ө1 hardware task process critical
information and demands high bandwidth
communications, three instances of it are executed,
being connected to the NoC. On the contrary, since
hardware tasks Ө2 and Ө3 process non-critical
information and do not require any data to be
interchanged, for each of them a single instance is
executed without access to the NoC. The NoC itself
constitutes the Communication level, which
disseminates the information among tasks in a
reliable way. At physical level, it can be observed
how the damaged resources are circumvented by
means of dynamic routing and fault-aware allocation:
The damaged CLB prevents the hardware task Өi to
be placed next to the NoC interface. R3TOS is able
to manage the entire system through the ICAP port,
which enables it to transversally access every
system level at runtime.

Figure 5: R3TOS based system functional model

2.3 Towards Self-Healing in R3TOS

Including fault tolerance by design features in the
R3TOS core is not sufficient for enabling its use in
ultra-dependable applications. In order to cope with
faults directly affecting it, R3TOS core should be
able to relocate itself leading to develop a kind of
self-healing capability.
Although self-relocation is impossible to be
performed by using currently available technology,
the ultimate objective can be achieved by including
redundant instances of R3TOS in the same chip.
Every instance of R3TOS could thus relocate the
other instances. Additionally, the R3TOS instances
could diagnose each other. For acting so it is
necessary to make the ICAP port accessible through
the NoC for the R3TOS instances running in the
device, as proposed in [15].

As previously stated ICAP is indeed one of the single
points of failure of the FPGA and consequently
should be meticulously hardened [16].

3. Conclusions

The foundations for building R3TOS operating
system have been presented in this paper. R3TOS is
aimed at increasing FPGA-based systems
performance in a reliable way, promoting its
exploitation by the whole engineering community
towards more advanced and sophisticated
applications and ultimately, towards progress.
Computational Efficiency is achieved by
appropriately managing FPGA’s computational
elements and coordinating the execution of the
computation tasks, in which the application is
decomposed (See Fig. 6). The tasks are
implemented as specific hardware architectures,
which are executed upon the ”virtualized” FPGA,
being thus possible to execute large applications
which require as a whole more computational
resources than those incorporated in the FPGA chip.

Figure 6: Scheduling, allocating and executing

hardware tasks onto a partially damaged FPGA by
using the R3TOS approach

Temporal Correctness is achieved by using both a
real-time scheduler, which ensures every
computation to be performed within required
deadlines for them, and an appropriate NoC, which
ensures real-time communication among the tasks in
execution.
Logical Computation Correctness is achieved by
avoiding the use of damaged resources at logical
level and by executing spatial diverse replicated
hardware tasks, which ensure the availability of the
system. Furthermore, the hardware redundancy
saves at least one ”logic level” over conventional
higher-level software redundancy, achieving
reliability without sacrificing the performance.
Hence, by adding R3TOS abstraction layer:

 Page 5/6

 Page 6/6

• FPGA related technological complex aspects are
hidden, giving to the FPGA a ”software like look
and feel” and insulating applications from
architectures.

• The required autonomy for dealing with
occurring faults in the silicon substrate is
achieved once the system has been launched
and it is operating out of reach of the designer.

• Device’s lifetime is prolonged and the impact of
aging degradation on performance is minimized.

• The direct, efficient and reliable translation of
electronic advances into system performance
improvement is promoted as well as the
reusability of tested circuitry, speeding up
development cycles and shortening time-to-
market.

Herein presented ideas are next to be implemented,
making R3TOS a reality. The authors are opened to
any type of collaboration with institutions and
organizations sharing similar objectives.

4. References

[1] Xilinx Inc.: “Early access partial reconfiguration
user guide”, UG208, 2008.

[2] P. Lysaght, B. Blodget, J. Mason, J. Young, and B.
Bridgford: “Invited paper: Enhanced architectures,
design methodologies and CAD tools for dynamic
reconfiguration of Xilinx FPGAs”, In Proc. of the
International Conference on Field Programmable
Logic and Applications, pages 1–6, 2006.

[3] S. Borkar: “Thousand core chips: a technology
perspective”, In Proc. of the annual Design
Automation Conference, pages 746–749, 2007.

[4] G. Brebner: “A virtual hardware operating system
for the Xilinx XC6200”, Proc. of the International
Conference on Field Programmable Logic and
Applications, pages 327– 336, 1996.

[5] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W.
Schwabl, C. Senft, and R. Zainlinger: “Distributed
fault-tolerant real-time systems: the Mars
approach”, IEEE Microelectronics Journal, volume
9, number 1, pages 25–40, 1989.

[6] R. Obermaisser, C. E. Salloum, B. Huber, and H.
Kopetz: The time-triggered System-on-a-Chip
architecture”, In Proc. of the IEEE International
Symposium on Industrial Electronics, pages 1941–
1947, 2008.

[7] D. P. Montminy, R. O. Baldwin, P. D. Williams, and
B. E. Mullins: “Using relocatable bitstreams for
fault-tolerance”, Proc. of the NASA/ESA
Conference on Adaptive Hardware and Systems,
pages 701–708, 2007.

[8] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A.
Lesea, K. Label, M. Friendlich, H. Kim, and A.
Phan: “Effectiveness of internal versus external
SEU scrubbing mitigation strategies in a Xilinx
FPGA: Design, test, and analysis”, IEEE
Transactions on Nuclear Science, volume 55,
number 4, pages 2259–2266, 2008.

[9] IEC-61508: “Functional safety of electrical /
electronic / programmable electronic safety-related
systems”, 1st Edition, 1998.

[10] A. Avizienis: “An immune system paradigm for the
design of fault tolerant systems”, In Proc. of the
European Dependable Computing Conference on
Dependable Computing, pages 81–83, 2002.

[11] P. Sedcole, B. Blodget, T. Becker, J. Anderson,
and P. Lysaght: “Modular dynamic reconfiguration
in Virtex FPGAs”, IEE Proceedings on Computers
and Digital Techniques, volume153, number 3,
pages 157–164, 2006.

[12] B. Ahmad, A. T. Erdogan, and S. Khawam:
“Architecture of a dynamically reconfigurable NoC
for adaptive reconfigurable MPSoC”, In Proc. of the
NASA/ESA Conference on Adaptive Hardware and
Systems, pages 405–411, 2006.

[13] B. Osterloh, H. Michalik, and B. Fiethe: “SoCWire:
A robust and fault-tolerant Network-on-Chip
approach for a dynamic reconfigurable System-on-
Chip in FPGAs”, In Proc. of the International
Conference on Architecture of Computing Systems,
pages 50–59, 2009.

[14] A. Hopkins, T. Smith, and J. Lala; “FTMP: A highly
reliable fault-tolerant multiprocessor for aircraft
control”, In Proc. of the IEEE, volume 66, pages
1221–1239, 1978.

[15] C. Schuck, B. Haetzer and J. Becker: “An interface
for a decentralized 2D-reconfiguration on Xilinx
Virtex FPGAs for organic computing”, International
Journal of Reconfigurable Computing, 2009.

[16] J. Heiner, N. Collins and M. Withlin: “Fault Tolerant
ICAP Controller for High-Reliable Internal
Scrubbing”, In Proc. of the IEEE Aerospace
Conference, pages 1–10, 2008

