
R3TOS: A Reliable Reconfigurable Real-Time Operating System 
X. Iturbe1,2, M. Azkarate1, I. Martinez1, A. Perez1, K. Benkrid2, A.T. Erdogan2, T. Arslan2 

1Embedded System-on-Chip Group, IKERLAN-IK4 Research Alliance, Mondragón, 20500, Basque Country 
Email: {xiturbe, mazkarateaskasua, imartinez, aperez}@ikerlan.es                                                       

2System Level Integration Research Group, The University of Edinburgh, Edinburgh EH9 3JL, Scotland, UK         
Email: {x.iturbe, k.benkrid, ahmet.erdogan, t.arslan}@ed.ac.uk                                                          

 
 
 

Abstract: The foundations for building the first 
Reliable Reconfigurable Real-Time Operating 
System (R3TOS) are presented. The main objective 
of R3TOS is to create an infrastructure for 
coordinately executing specialized hardware tasks 
upon a reconfigurable FPGA device, achieving the 
necessary flexibility for both gaining system 
performance (true hardware multitasking) and 
tolerating the occurring faults in the underlying chip’s 
silicon at runtime (true fault removal from system). 
R3TOS is aimed at easing the development of 
FPGA-based high-performance demanding reliable 
applications by hiding the complexity of these 
devices, promoting their use by the whole 
engineering community. 
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1. Introduction: The 21st Century FPGAs 

21st century Field-Programmable Gate Arrays 
(FPGAs) are not used for implementing simple ”glue 
logic” functions anymore. They have become a 
fascinating parallel and distributed extremely 
advanced compute fabrics with a regular architecture 
of reconfigurable computational elements and 
memories, which can be seen as an alternative to 
the Von Neumann serialized processors in which the 
computational elements are fixed. In general terms, 
an FPGA can be considered as a ”liquid silicon” 
which is appropriately ”molded” to create the desired 
functionality. Specifically, SRAM-based FPGAs are 
able to self-reconfigure the functionality implemented 
by a part of the computational elements they include 
while the rest of them are still performing active 
computation. This capability is commonly called 
Dynamic Partial runtime Reconfiguration (DPR) and 
has been significatively improved in Xilinx partial 
reconfiguration early access tools latest fully 
supported Virtex-4 family of devices [1,2]. First, the 
chip fabric is divided into independently 
reconfigurable units (clock regions), which allow 
reconfigurable modules to be located in the same 
column. Second, the new 32-bit wide and 100 MHz 
running Internal Configuration Access Port (ICAP) 
permits the reconfiguration to be performed much 
faster. 

1.1 Towards Higher Performance 

DPR turns the FPGA into a flexible computing device 
in which it is possible to online configure different 
custom architectures, each of them specialized for 
every type of computation to be done. While a 
program defining instructions sequentially customize 
the data-path of the Von Neumann processor in 
order to obtain the best performance as possible 
from a general purpose computation structure, a 
partial bitstream configures the functionality 
assigned to a specific region of the FPGA by 
defining the required architecture at logical level. 
Specialized hardware architectures are thus 
”molded” on the FPGA silicon at runtime, leading to 
a new computation paradigm which crosses the 
hardware/software boundaries, combining the 
flexibility of software with the speed of hardware.  
Based on software-like flexibility, the use of FPGA 
based computers able to schedule their own 
workload is a natural tendency towards high-
performance, as occurred in the software field some 
decades ago. This time, however, computation tasks 
are to be executed in a much more appropriate way 
than when being executed upon a single serialized 
processor whose architecture is rigid at logical level. 
On the other hand, hardware-like computing in 
space leads to massive parallelism exploitation and 
extremely efficient execution and thus, hardware 
multitasking arises as a certain reality. In this way, it 
is possible to circumvent Pollack’s rule, which states 
that the increase in performance of a sequential 
processor is only about the square root of the 
increase in its complexity [3]. Hardware tasks can be 
allocated on the FPGA, executed and finally 
replaced by other hardware tasks, leading to a 
continuous stream of input operands, computation 
and output results, which combines the computation 
both in space and in time. 
Hence, as firstly proposed by Brebner, there is a role 
for a Reconfigurable Operating System (ROS) in 
coordinating the concurrent hardware tasks 
execution as well as making FPGA computational 
underlying resources easy to be used and shared, 
by managing them on behalf of the user application 
[4]. That is, the underlying hardware is ”virtualized” 
and thus, every additional computational elements 
included in the FPGA are potentially exploitable by 
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the user application by means of the ROS, leading to 
increase the computational power. 
 

1.2 Towards Higher Reliability 

Besides performance, reliability is another aspect 
also benefited from DPR, which opens the doors to 
new more advanced possibilities for implementing 
fault tolerant distributed operating systems some 
decades after they were firstly conceived (e.g. 
TUWien developed Mars OS in 1988 [5]). The main 
idea of these OSs is the replication of tasks 
execution in different, independent and redundant 
components, which interact only through an 
intercommunication network. In this way, as long as 
any of these redundant components can operate, 
the required service can be maintained. Additionally, 
Mars OS was intended to be maintainable since any 
redundant component could be removed (for 
repairing purposes) and later reintegrated in the 
system. 
FPGAs allow the migration from the aforementioned 
late 80’s federated distributed systems to System-
on-Chip (SoC) integrated architectures, in which 
replicated hardware tasks are separately yet 
simultaneously executed on the same chip, being 
only connected through an appropriate Network-on-
Chip (NoC) which ensures no interference will occur 
between tasks [6]. Opposite to the rigidness of the 
limited number of redundant components integrable 
in a federated system, which involved an external 
intervention in order to recover from faults (usually 
consisting in component replacement), the massively 
replicated versatile computational resources 
available in an FPGA can be autonomously 
reconfigured for circumventing the faults without 
requiring any external maintenance [7]. 
Consequently, by using self-reconfigurable FPGAs a 
true fault tolerant (not only maintainable) ROS can 
be developed, able to dynamically allocate every 
scheduled hardware tasks for execution to non-
damaged computational resources. Hence, the 
system is able to autonomously adapt its own 
architecture ”on-the-fly” in order to overcome fault 
effect and ultimately, maintain the required service. 
Likewise, soft-errors caused by radiation can be 
automatically corrected by performing a scrubbing in 
the configuration memory [8].  
These features are especially attractive when 
systems are difficult to access and operate on harsh 
environments which induce faults on them. 
Nowadays these kind of scenarios may be found in 
deep space exploration, remote sensing and military 
applications, but in time, the autonomy bringing 
benefits may also prompt adoption by the 
commercial sector.  
Real-time is another important challenge in high 
reliability demanding applications. The correctness 
of a system usually depends not only on the logical 

correct computation of results, but also on temporal 
correctness. In this way, precised time constraints 
must be met, usually dictated by events from its 
environment. Since FPGA-based computers can 
fastly process many computations in parallel, they 
show very short latencies when responding to 
environmental events and thus, they can bring closer 
real-time behaviour in the order of milliseconds. 
Whether by meeting real-time constraints (temporal 
correctness) or by keeping the system fault-free at 
every time (logical computation correctness), DPR 
permits to step up to the Safety Integrity Levels (SIL) 
demanded by current international standards (e.g. 
IEC-61508 [9]). 
 

1.3 R3TOS: Universalizing the Reliable High-
Performance 

However, despite the very promising and attractive 
possibilities dynamically and partially reconfigurable 
FPGAs offer in both performance and reliability 
aspects, currently they are yet to be widely adopted. 
One reason is the lack of a consolidated and intuitive 
support for the development, management and 
execution of hardware tasks based reliable 
applications. In fact, FPGAs flexibility, which is the 
key for the innovative possibilities they deliver, is 
also the cause of the appearing difficulties when 
designing with them. This situation puts FPGAs at a 
disadvantage compared to existing abundance of 
software approaches. Consequently, the easiness 
for developing this kind of applications on FPGAs 
must be promoted in order to enable the exploitation 
of the powerful capabilities these devices deliver by 
the whole engineering community, especially by 
those who are not familiar with hardware related 
issues. After all, software high-level approaches can 
only mask occurring faults in the underlying silicon 
substrate, while dealing with them at logical level 
permit to definitely remove the fault sources from the 
system [10]. 

2. The R3TOS Approach 

The objective of the Reliable Reconfigurable Real-
Time Operating System (R3TOS), the first 
proposed ROS that exploits FPGAs reconfigurability 
for fault tolerance purposes, is to provide the 
necessary support without incurring in additional 
design costs for continuously adapting system 
architecture at runtime in order to gain performance 
while ensuring real-time behavior and tolerate 
occurring faults in the system. Thanks to it the 
application developer is only in charge of defining 
and implementing the required functionalities as 
hardware tasks, which are then efficiently managed 
and executed by R3TOS in a reliable way. This level 
of abstraction provides the application developers 
with a ”software look and feel” easy-to-use FPGA 
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based advanced computer, enabling them to take 
advantage of the ever increasing complexity of state-
of-the art reconfigurable devices in order to deal with 
the exigent requirements modern applications 
demand and thus, contributing to reduce currently 
existing productivity gap. 
 

2.1 Foundations for R3TOS 

The proposed architecture for R3TOS is depicted in 
Fig. 1. It consists of eight different layers, which are 
to be executed upon both custom hardware and a 
general purpose processor (e.g. PowerPC, 
MicroBlaze or preferably LEON3-FT): 
 
• COTS Real-Time Picokernel, which offers a 

well-known interface for software developers, 
coordinates software threads execution and 
gives support for intertask communication and 
synchronization. It runs upon the general 
purpose processor. 

• Real-Time Scheduler, which is aimed at 
coordinating the access to the ICAP port in an 
efficient way and assign the appropriate 
execution starting times to the hardware tasks.  

• 2-D Allocator, which is responsible of allocating 
the hardware tasks to the non-damaged 
computational resources available on the FPGA 
by generating the corresponding configuration 
partial bitstreams for them. 

• NoC Manager, which updates the routing tables 
in the NoC switches according to hardware tasks 
locations at every time. 

• Dynamic Router, which is responsible of 
dynamically creating communication links 
among the allocated hardware tasks and the 
NoC interfaces (NIs). 

• Diagnostic Unit, which performs the diagnosis of 
the system: at functional level, by analyzing the 
exchanged information through the NoC, and at 
physical level, by checking the configuration 
frames read-back from the FPGA’s configuration 
memory. 

• Placer, which is aimed at controlling the ICAP 
port while the reconfiguration process takes 
place. 

• Inter-Device Coordinator, which is in charge of 
coordinating the distinct R3TOS instances 
running in replicated FPGAs, making it possible 
the hardware tasks migration among different 
devices. 
 

These layers should be designed including fault 
tolerance by design features in order to achieve the 
highest reliability for the R3TOS core itself. 

Additionally, a high-level software tool to program 
the operating system should be provided. This tool 
should include a friendly environment in which 
program the hardware tasks and should cover the 
later synthesis and download of the generated partial 
bitstreams for the tasks as well as the initialization of 
the corresponding variables in R3TOS. 
 

2.2 The Architecture of R3TOS 

Xilinx XC4VLX200 FPGA is the most appropriate 
device for implementing an R3TOS-based system as 
it is divided into 12x2 independently reconfigurable 
clock regions and includes two clearly differentiated 
regions: While there are 42 adjacent CLBs in the 
central region of the device, the exterior region 
includes both 3-4 BRAMs and 16 CLBs (See Fig. 2). 
Since BRAMs are necessary for implementing 
buffers in the NoC interfaces as well as the routing 
tables in the NoC switches, the exterior region of the 
FPGA is appropriate be used for task inter-
communication purposes, being called 
communication region. On the contrary, the central 
homogeneous region is used for allocating the 
hardware tasks to be executed, being called 
computation region. In this way, every clock region 
includes a NoC interface, which establishes the 
border between the communication region and the 
computation region, several NoC switches, I/O 
interfaces and the computational resources to which 
tasks are allocated. It is remarkable that, opposite to 
currently existing solutions, R3TOS is conceived to 
be able to merge and later separate again different 
clock regions according to the shape and size of the 
hardware tasks to be allocated. 
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Figure 1: R3TOS layered architecture 

 
The computation region consists of a regular CLBs 
arrangement, being the regularity the key for 
increasing tasks allocatability [11]. Consequently, 
any scheduled task to be executed can be freely 
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allocated to any specific fault-free position within the 
computation region and thus, damaged resources 
avoidance is promoted. When required, the dynamic 
routing unit online creates a communication link 
between an allocated task (wherever it is placed in 
the computation region) and the nearest NoC 
interface to it. This mechanism permits to circumvent 
the damaged resources in the proximities of a NoC 
interface, which otherwise would prevent the 
utilization of a whole clock region. 
On the other hand, the NoC, whose routing tables 
can be dynamically adapted to the changing 
locations of tasks, conducts long-distance 
communication along the chip (e.g. [12]). The NoCs 
are indeed proven to be the best communication 
mechanism for coping with faults on high bandwidth 
reconfigurable systems such as the one here 
presented [13]. Besides that, since the NoC is the 
only way of interaction among tasks, it is possible to 
diagnose the system behaviour by analyzing the 
value and timing of the information exchanged 
through it. The diagnosis can be enhanced by 
evaluating the Error Correcting Codes (ECC) of the 
configuration frames stored in the FPGA’s 
configuration memory, which can be read-back at 
runtime. 
 

 
Figure 2: R3TOS-based system implementation in a 

Xilinx XC4VLX200 FPGA 

 
The tasks are classified according to their 
communication demand and the criticality of the data 
they process. 
Tasks which demand high amount of data to be 
interchanged with other tasks or with the 
environment (e.g. control tasks) are more likely to be 
placed close to the communication region, in order to 
ease the information exchange through the NoC. In 
fact, the only reason for not being allocated next to a 
NoC interface is the existence of damaged 
resources in its proximity, which will make tasks to 
be placed deeper within the computation region, 
involving the creation of a dynamic route to the 

nearest NoC interface. On the contrary, tasks which 
do not require any information to be interchanged 
(e.g. pure computation tasks) are more likely to be 
placed opposite to the communication region (See 
Fig. 3). For this type of tasks, the loading, 
initialization and result retrieval will be performed 
through the ICAP port by accessing some registers 
which are located in specific positions in the task 
architecture. This schema ensures the best 
exploitation as possible of the computational 
resources included in the FPGA device. 
Tasks which process critical information are 
simultaneously executed on different clock regions in 
order to ensure the logical computation correctness, 
while tasks which do not perform critical 
computations are not replicated. Although spatial 
diversity reduces the probabilities a single fault 
affects distinct instances of the same tasks, this fact 
cannot be completely ensured because the FPGA 
itself is a fault-containment region since a single 
failure either in the power supply, clock tree or ICAP 
port could make the entire device useless. As stated 
in [14], in order to achieve the maximum level of 
reliability, the system must be partitioned into 
independent fault-containment regions and thus, 
tasks must be executed in different FPGA devices 
which use distinct clock sources and are 
independently powered (See Fig. 4). 
 

 
Figure 3: Allocation of tasks depending on their 

communication requirements 

 
 

 
Figure 4: On-chip and off-chip TMR 

 Page 4/6 



Fig. 5 summarizes the foundations of the R3TOS-
based system explained in this section. At system 
level, different hardware tasks are allocated and 
executed. Since Ө1 hardware task process critical 
information and demands high bandwidth 
communications, three instances of it are executed, 
being connected to the NoC. On the contrary, since 
hardware tasks Ө2 and Ө3 process non-critical 
information and do not require any data to be 
interchanged, for each of them a single instance is 
executed without access to the NoC. The NoC itself 
constitutes the Communication level, which 
disseminates the information among tasks in a 
reliable way. At physical level, it can be observed 
how the damaged resources are circumvented by 
means of dynamic routing and fault-aware allocation: 
The damaged CLB prevents the hardware task Өi to 
be placed next to the NoC interface. R3TOS is able 
to manage the entire system through the ICAP port, 
which enables it to transversally access every 
system level at runtime. 
 

 
Figure 5: R3TOS based system functional model 

2.3 Towards Self-Healing in R3TOS 

Including fault tolerance by design features in the 
R3TOS core is not sufficient for enabling its use in 
ultra-dependable applications. In order to cope with 
faults directly affecting it, R3TOS core should be 
able to relocate itself leading to develop a kind of 
self-healing capability.  
Although self-relocation is impossible to be 
performed by using currently available technology, 
the ultimate objective can be achieved by including 
redundant instances of R3TOS in the same chip. 
Every instance of R3TOS could thus relocate the 
other instances. Additionally, the R3TOS instances 
could diagnose each other. For acting so it is 
necessary to make the ICAP port accessible through 
the NoC for the R3TOS instances running in the 
device, as proposed in [15].  

As previously stated ICAP is indeed one of the single 
points of failure of the FPGA and consequently 
should be meticulously hardened [16]. 

3. Conclusions 

The foundations for building R3TOS operating 
system have been presented in this paper. R3TOS is 
aimed at increasing FPGA-based systems 
performance in a reliable way, promoting its 
exploitation by the whole engineering community 
towards more advanced and sophisticated 
applications and ultimately, towards progress. 
Computational Efficiency is achieved by 
appropriately managing FPGA’s computational 
elements and coordinating the execution of the 
computation tasks, in which the application is 
decomposed (See Fig. 6). The tasks are 
implemented as specific hardware architectures, 
which are executed upon the ”virtualized” FPGA, 
being thus possible to execute large applications 
which require as a whole more computational 
resources than those incorporated in the FPGA chip. 
 

 
Figure 6: Scheduling, allocating and executing 

hardware tasks onto a partially damaged FPGA by 
using the R3TOS approach 

 
Temporal Correctness is achieved by using both a 
real-time scheduler, which ensures every 
computation to be performed within required 
deadlines for them, and an appropriate NoC, which 
ensures real-time communication among the tasks in 
execution. 
Logical Computation Correctness is achieved by 
avoiding the use of damaged resources at logical 
level and by executing spatial diverse replicated 
hardware tasks, which ensure the availability of the 
system. Furthermore, the hardware redundancy 
saves at least one ”logic level” over conventional 
higher-level software redundancy, achieving 
reliability without sacrificing the performance. 
Hence, by adding R3TOS abstraction layer: 
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• FPGA related technological complex aspects are 
hidden, giving to the FPGA a ”software like look 
and feel” and insulating applications from 
architectures. 

• The required autonomy for dealing with 
occurring faults in the silicon substrate is 
achieved once the system has been launched 
and it is operating out of reach of the designer. 

• Device’s lifetime is prolonged and the impact of 
aging degradation on performance is minimized. 

• The direct, efficient and reliable translation of 
electronic advances into system performance 
improvement is promoted as well as the 
reusability of tested circuitry, speeding up 
development cycles and shortening time-to-
market. 

 
Herein presented ideas are next to be implemented, 
making R3TOS a reality. The authors are opened to 
any type of collaboration with institutions and 
organizations sharing similar objectives. 
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